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The FLOW Tutor: Schemas for Tutoring

Donald R. Gentner and Donald A. Norman

University of California, San Diego

Consider how a human tutor might instruct a student learning
a programming language. The student attempts a problem while the
tutor watches. The student has difficulty, makes some errors and
corrects some errors. Sometimes the tutor gives advice, other
times the tutor simply waits for the student to correct the
errors without eéessistance. All through this, the tutor must
bring to bear a considerable amount of knowledge. The tutor must
have a model of both the student and of the topic matter, simu-
lating the progress of the student through the material to be
acquired. The tutor must consider the developing conceptual
structures of the student, the student's progress on the current
task, and by using some appropriate teaching strategy, decide
when it is best to intervene and when it is best to let the stu-

dent work out the problem alone, without assistance.

———— ———————— o —————————————

Figure 1 shows a sequence of keypresses from a student

attempting to solve a computer programming problem. This example




Time Keypress

1386
1387
1387
13960
1393 :
1396 RUBOUT
1397 RUBOUT
1400
1406
1404
1404
1405
1418 ,
1434 l
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Figure 1

Sequence of student keypresses on the comput-
er terminal. The number of seconds since the
start of the session is indicated in the left
column.




shows some of the problems faced by an automated tutor. Based
on this information, an automated tutor must decide if the stu-
dent is making good progress, or if not, what advice to give.
Human tutors can deal with this situation. Obviously, the human
tutor uses other information to interpret the student's
keypres;es: information about the programming language and the
particular way it is implemented on this computer system, infor-
mation about the course of instruction and the problem the stu-
dent is attempting to solve, and information about the knowledge
structures of the student. Tutors must also have a knowledge of
learning principles to infer just what course of action would be
most beneficial for the student: too much advice can be as harm-
ful as not enough. Moreover, the tutor must be flexible. The
tutor must have a plan of instruction, but the student may not be
ready for that plan. The tutor must be prepared to deviate from
the plan whenever the student behavior calls for new tactics.
The plan of the tutor constitutes a top-down, conceptually driven
guidance of the tutorial session; the behavior of the student
constitutes a bottom-up, data ariven guidance of the session. A

successful tutor must be guided from both directions.

Our goal is to understand the basic cognitive processes
involved in learning and teaching, and to develop computer-based
theories and models of these processes. Much of the work has

been concerned with the learning of a simple computer language,

known as FLOW (see Norman, Gentner & Stevens, 19767-NaLm3p,
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1975). FLOW is a simple computer language (nc subroutines, only
one variable). . University undergraduates with no previous
knowledge of computer programming can usually master the basic
elements of FLOW in two-to-ten hours. In the next section of the

paper, we discuss our observations of human tutors. Then, we

describe the development of a schema-based automated FLOW tutor.

Tutoring

————————————————— 1 - —————————————————

Figure 2 shows the experimental arrangement. A student
sits in an acousti;ally isolated room with an instruction booklet
for the FLOW language. The booklet describes computer program-
ming and introduces FLOW with a series of examples and program-
ming problems. The student can try out the examples and attempt
to solve the problems on the computer terminal which is connected
to a minicomputer. In principle the student could 1learn FLOW
simply by reading the instruction booklet and trying out pro-
grams on the terminal. In practice, however, students usually
have considerable difficulty and need advice from a human tutor.
In our most common tutorial arrangement, the human tutor sits in
an adjacent, isolated room where a copy of the student's termi-
nal screen is displayed on a TV monitor. Any advice to the stu-
dent 1is relayed via a pair of linked terminals, as shown in Fig-

ure 2.
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Observations of Human Tutors

In our studies of tutorial 1instruction we have used a
variety of techniques. Some have been described previously (Nor-
man, Gentner, & Stevens, 1%976; Gentner, Wallen, & Miller, 1974).
We examined a number of different dimensions of tutorial interac-
tion and different methods of getting at the conceptual struc-

tures of the student:

Tutor continually asking student to think aloud, or

simply observing, commenting only when necessary;

A dual-student interaction, with each student helping

the other, or simply one student at a time;

Asking the human tutor to simulate an automated tutor,
using no more information than would be available to
such a system, or letting the human tutor use every

source of information possible;

Watching students who have no tutoring at all, but are
learning FLOW either in pairs or alone (in either case,
with only the instruction manual and an active terminal

to guide them);

Asking tutors to have minimum interaction or maximum

interaction;




Retrospective tutoring, in which an actual session 1is
replayed over the computer terminal to the tutor who 1is
asked to treat it as if the student were actually 1in
the adjacent room. The tutor thinks aloud, stating
what he thinks the student is doing and what advice he

would give, when, and why.

The tutors were all experts at FLOW, and in many cases, experi-
enced teachers. The tutors had before them a copy of the
instruction manual being used by the students and they were fami-
liar with 1its contents (in fact, most of the tutors had been

involved in writing the manual).

Some Comments on Experimental Procedure

When the tutor was in a different room from the student, all
advice to the student appeared on a second terminal located
beside the student. We found it important to use two terminals,
in order to make a clear distinction between the tutorial aspects
of the session and the workings of FLOW. Earlier, when we had
attempted to wuse the same terminal for both FLOW and tutorial
messages, we found that the messages either caused confusion or
were overlooked: the students could not distinguish the various
sources of information appearing on one terminal. Many students
have strange and mystical ideas about how computers work, and the
use of a single terminal for both functions added to their confu-

sion. A separate terminal, wused only as a tutor, came to be

- ,, - o :




viewed as the teacher, and students were sometimes recorded talk-
ing to it ("well, come on, tell me what to do"). We believe the
advantages of using a separate terminal for the tutorial system
applies to most topics, including'topics not based around pro-

gramming or use of computers.

We tried various technigues to determine what the student
was thinking at each point in the session. One method was simply
to have the tutor in the same room as the student, continually
asking the student to "think aloud," or "what are you thinking
now," or "why did you do that?" In these sessions the students
often seemed to Dbe under pressure and responded defensively
despite our attempts to be supportive. Our best technique was to
ask two students to work together and to put the tutor in a
separate room. One student sat at the FLOW terminal and did
whatever typing was required. The other student read aloud from
the instruction manual. The procedure was quite effective 1in
eliciting the thoughts of the students in natural ways, for they
would discuss with each other what they thought each part of the
manual meant. Wwhen the students encountered problems, they would
typically discuss their ideas about the source of the problem,

and the possible alternative solutions.

Although we tape recorded the comments of the students, we
usually did not let the tutor hear them. Later, we could replay
the session, allowing us to evaluate the tutor's hypotheses.

Often the students' comments showed that the tutor had misjudged




the problems faced by the students. We recommend this two-
student instructional dialog technique as a way of getting natur-
alistic protocols of student thoughts. Of course, it is awkward
to attempt to simulate & two-headed student, so for some pur-
poses, the technigue cannot be used. (we have considered using a
trained experimenter to play the role of the second student, thus
eliciting natural comments without the pressure of a tutor's pry-

ing. There are many difficulties far with this scheme, however,

and so we have not used it.)

Six Principles of Human Tutoring

Our observations of human tutors are hard to gquantify, but
they did provide wus with useful principles with which to guide
the development of the automated tutor. Human tutors are guided
in a variety of ways. The following six principles emerged from

our observations.

1l: Conceptually driven guidance. Tutors have a plan of

instruction which sets the overall structure for the session and
helps guide their expectations of student performance. This 1is
top-down or conceptually driven guidance. Tutors normally differ
in how well formulated these instructional plans are, but in our
experiments the instruction manual was provided, so this aspect

of tutoring was determined beforehand.

2: Data-driven guidance. Tutors are responsive to student

behavior. Thus, they can be data-driven, deviating from the




lesson plan whenever it seems sensible to do so. Data-driven
tutoring seemed always to be triggered by errors (which includes
? a failure to make any response) or by unexpected correct
responses. The response of the tutor to a student error seems
best characterized as an attempt to fina some explanation for the
student's Dbehavior, then postulating some instructional seguence
that will overcome the problem. Thus, the events witnessed by
the tutor trigger a search for an adequate conceptualization that
can serve as an explanation for the observations. Once formed,
the conceptualization then acts as top-down, conceptual guidance
for the lesson plan until the tutor is satisfied the problem is
overcome. Then the original plan (from the instruction manual)

is resumed.

3: Active discovery. Tutors seemed unwilling to interfere

too often. Their method of 1instruction seemed to contain an

i 1 o B S 1

implicit assumption that it was best for the students to discover
the concepts through active exploration, which includes making
numerous mistakes. Tutors would therefore allow students to make
errors or to pause for rather long periods of time, offering help
only if the number of mistakes or length of pause exceeded some
threshold value of tolerance. There were exceptions to this pol-
icy. 1f an important piece of information seemea to be entirely
missing then it would be offered directly (to minimize time and

frustration). Similarly, if the problem seemed unimportant, it

didn't seem worth the student's effort to let them worry about
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it, and the student was simply told what to do (for example, that
to type a gquote mark, you must type a "shift-2"). Tutors also
worried if the student seemed to have several simultaneous
misunderstandings. The ideal situation for discovery learning
seems to be when the student has a single incorrect concept and
the resources to locate and modify that concept in a reasonable

amount of time.

4: Say too little, not too much. There seemed to be an

implicit feeling among several of the tutors that it was best to
err by saying too little rather than too much. This aspect of
tutoring varied considerably among the tutors, however. This is
consistent with the principle stated above -- discovery learning.
Thus, the information given the student often was in the form of
guides or small fragments of information that would allow the
students to discover for themselves the total story. Sometimes,
the advice was to re-read a section of the manual. This form of
advice giving can be characterized as tutoring by offering clues

rather than tutoring by giving answers.

5: wWait and see. Tutors often hung back in their assessment

of stuaent difficulty. This was revealed most dramatically when
we asked tutors to watch the replay of previous 1learning ses-
sions. We wanted to study how tutors updated their model of the
student, so we probed the tutors after each student response (or

after each 11 seconds of pause). Tutors would often refuse to

speculate, claiming that they wanted to wait and see what would




happen next. We have decided that this refusal to speculate
after each 1tem of student behavior is quite beneficial, for it
limits the zmount of needless search and analysis the tutor needs
to deo. By waiting for a reasonable sequence of responses, the

number of possible interpretations is considerably constrained,
and the task of forming a conceptual model of student performance
is much simplified. This strategy takes advantage of the fact
that it is not necessary to correct a student problem the instant

it is detected.

6: A little irrelevancy is ok. Tutors discovered that they

did not always need to be accurate in their assessment of student
behavior. Oftentimes a puzzling sequence of behavior would turn
out to be irrelevant, for the student would get on the appropri-
ate track without aid. The tutor could afford to ignore things.
Even 1if retrospective analysis showed the behavior to be a hint
of forthcoming difficulties, little was lost by not noting it
immediately. If there was a real difficulty, students would
reveal it again. Even when tutors misinterpreted student
behavior and thereby offered irrelevant advice, little harm was
done: the students seemed quite content to ignore the advice.
(Unfortunately, they frequently seemed content to ignore relevant

advice, too.)

The above comments on tutorial strategies should not be over
interpreted. Our tutors did not work independently of one

another. They consisted of the several of us who worked on the
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FLOW project. Wwe often discussed our str?tegies. Sometimes
several tutors would work together, so the instruction was a
joint venture of two or more people. Even when a single tutor
seemed to provide useful information, we have no way of knowing
if this was an optimal instructional sequence. All we can say 1is
that we have observed ourselves tutoring students, and we have
made six generalizations from these observations. We will use
these principles in the design of the automated tutorial system.

But the studies are of real tutors, not ideal tutors.

The Automated FLOW Tutor

The automated FLOW tutor is designed to simulate a human tutor.
From now on, unless we explicitly say "human tutor," the word
"Tutor" will refer to the computer program designed to serve
this Eunction. The Tutor receives a message from the student's
minicomputer whenever the student presses a key on the terminal
or pauses for more than about eleven seconds. The automated
Tutor must interpret these keypresses and pauses in terms of a
student progressing through the FLOW instruction booklet. If the
Tutor determines that the student is having difficulty, the Tutor
can send advice which appears on a second terminal in the

stuaent's room.

Ambiguities

Student responses are often ambiguous. This 1s especially

true where the only information available to the tutor is the




time sequence of keypresses made by the student. This, of
course, is the only information available to the automated Tutor.
Ambiguities can take many forms. For example, in isolation, the
individual keypresses are often ambiguous. In the FLOW computer
system, when the student types an 1illegal character, 1t 1s
displayed briefly accompanied by an audible "beep," and then it
is erased. Determining why that character was typed can be dif-
ficult. But even legal characters are often ambiguous. 1In FLOW,

for example, a D keypress may be part of a Display Quoted String

statement. In other <circumstances, a D keypress could also be

part of a Display Variable statement or part of a character

string. Similarly, a two-minute pause might reflect the fact
that the student was completely frustrated and needed immediate
help. But a two-minute pause could also occur while the student
was reading the instruction booklet and making perfectly normal
progress. The task for the Tutor, then, is to construct a broad
and detailed model of the student's conceptual understanding and
activities and wuse that model to interpret the current behavior
of the student. This interpretation of the student's behavior

must then be used to continually update the model of the student.

Conceptually Guided Processing

The normal method used to disambiguate student behavior is
conceptually guided prediction. The automated Tutor follows the
student's progress through the instruction booklet, allowing for

pauses while the student 1is reading. when an exercise or
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programming problem 1is encountered, the Tutor does the exercise
or solves the problem and predicts that the student's actions

will follow a similar course.

The Tutor's database contains a description of the function
of each problem presented to the student. The Tutor "solves" the
problem by expanding the function description into simpler func-~
tions, then into FLOW statements, and finally into the individual

keypresses. <

For example, suppose that a problem at some point
requires that the computer display the word "BILLY" on the

screen. The Tutor will eventually predict a Display Quoted

String statement and that the student will press the D key. If
the student actually presses the D key at that point, that D will
be interpreted as part of a statement to display "BILLY," even
though it is perfectly possible at this point that the D is part
of some other statement. After observing the D key, the Tutor
will then go on to predict that the student will press a gquote
key, then a B key, and so forth. Only if these later predictions
are not confirmed, will the Tutor consider other possibilities
for the initial D key. Although it is clear that conceptually
guided prediction can lead the Tutor into severe trouble when the
predictions are wrong, it normally leads to an easy and efficient

interpretation of otherwise ambiguous information.
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Data-Driven Processing

Conceptually guided processing works well as 1long as the
student's acticns match the predictions of the Tutor. Unfor-
tunately, students often do unexpected things. Remember, in our
observations of human tutors, we found that they were sometimes
unable or unwilling to make detailed predictions of student
behavior, especially when there was more than one reasonable
alternative for the student. To simulate this behavior, the FLOW
Tutor normally stops the conceptually guided expansion of
instances when an ambiguity is reached, and waits to see what the
student actually does before going further. If we call the con-
ceptual structures that the Tutor uses to understand the student
schemas, then the job of the Tutor is that of creating appropri-

ate schemas to explain student behavior.

The automated FLOW Tutor is intended to simulate an experi-
enced human tutor who is familiar with FLOW and the problems stu-
dents commonly have when learning it. The Tutor's starting data-
base thus has schemas which represent typical student errors.
With data-driven processing, unexpected student inputs may
incorporate themselves 1into instances of these error schemas.
wnen one of these error schemas is fully satisfied, the Tutor has
effectively recognized a student error and can act accordingly.
The general strategy of the Tutor is to let the student recover
from errors on their own, and only give advice when the student

is likely to become frustrated or confused. Thus, when an error

T ——
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schema discovers a student error, it normally predicts that the
student will pause, and only if that pause is actually observed
will it give advice to the student. If the student dJdoes some-
thing before the end of the predicted pause, the error schema
will be unsatisfied and disappear. The latest student action
will initiate new schemas which will take over the processing.
The pause length predicted depends on the type of error and the
Tutor's model of the stuaent. In general, if the Tutor believes
that the error is related to a concept which is new to the stu-
dent, advice will be given after a relatively short pause. On
the other hand, if the student has previously used this concept
correctly, the Tutor will allow a longer pause before giving

advice.

Schemas

The FLOW tutorial system is based upon a schema representa-
tion for knowledge of both the declarative aspects of the data
base and the procedural aspects of tutoring strategy. Schema- or
frame-based systems for the representation of information have
been proposed by numerous workers in Psychology and Artificial
Intelligence, but there have been few attempts to use them as the
vpasis for working systems (for an example of a related schema-
based system see Bobrow, Kaplan, Kay, Norman, Thompson, & Wino-

grad, 1970).
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The top left portion of Figure 3 snows & fragment of a FLOW

program, consistina of two Display Quoted String statements.
Each statement ha:c 2 statement number on the left and the charac-

ter string to be displayea 1is included between the guotes. The
student only has to type the underlined <characters; the other
characters are automatically provided by the computer. When
these statements are executed, the words RILLY and JEAN would be

displayed on the terminal screen.

The general schema for a Display Quoted String statement is

shown 1in the bottom left portion of Figure 3. The notation fol-
lows that of the ME!CD semantic network system described in Nor-
man, Rumelhart & the LNR Research Grour (1975). The schema has a
name, on the top line, followed by a series of slots, one on each
line. The first two slots are "argument" slots, which are usead
to distinguish individual instances of the schema, and are thus
EMPTY 1in the generic schema. (Our schemas typically have one to
three arguments.) The "specialist" slot gives the name of a pro-
cedure, in this case DISPLAYQSER, associated with the schema.
The "phost" slot will be discussea later. The last two slots in

the schema give particular instances of this schema.

)

Two instance of the DISPLAY-QUOTED-STRING schema,

n
™

(

corresponding to the two statements in the upper left portion of

the figure, are shown on the right in Figure 3. The first slot
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on these instances points back to the original schema. Phis  1s
followed by the two argument slots, which are now filled in.
Next comes a "status" slot, which indicates that this 1instance
has been OBSERVED. Schemas and instances are composed of other
schemas and instances, and that structure 1s reflected in the
final three slots. The "host" slot points to a higher 1level
instance which this instance is part of. In these cases, the
instance 1is part of a DISPLAY instance. Conversely, the "ele-
ment" slots point to the lower level instances which make up this
instance. Here we see that each 1instance is composed of an
instance of a D schema and an instance of 2 QUOTED-STRING schema.
An 1instance may have several elements, but is restricted to a

single nost.

Figure 4 shows the host and element instances of the second
DISPLAY-QUOTED-STRING instance shown 1in Figure 3. The DISPLAY
instance describes the function of the DISPLAY-QUOTED-STRING
instance, namely to display JEAN. It in turn is part of a2 more

complex DISPLAY-SEQUENCE instance.

The D instance shown in the figure has a =ingle argument
slot, giving the time when the student pressed this key.
Keypresses and TIME messages are the lowest level schemas used by

the FLOW Tutor, and therefore the D instance does not have any

elements. The QUOTED-STRING instance shown on the right also has




*9DUPL3ISUT uUeR JO SJUBWS T[S pue IS0y aulL

p 2anbryg

GG6T-dL0NDx FUDWSTD
TG6T-ONIMLS-d3LOYIVYHDOx FUSUWST
976 T-310N0Ox JUSWSTD
Z€6 T-ONI¥LS-AdLON0O-A¥TdSIA 3IsSoy
agnddsdgo sniels
NVAL =nTea
ONIYLS-AdLOND ewayds

Tv6 T-ONTHLS-ATLONOx

ZE6 T-ONIYLS-A3LOND-AVTdSidx 3ISOU
agaydsao snie3ls

LG8PQ P2A13SQO-2WT)

g Pwauyds

LE6T-Ax

ZE6T-ONIYLS-AALONDO-AYTdSIAx JUSWSTS
ZPRT-30NINDIAS-AVIdSIdx 3ISOY
A3dA¥3dsg0 snieas
NYA[L @2n1ea
£GRT-AVIdSIAx J°933E
AV1dSTAd PwWayds

TT16T-AVTdSTAx




-168-

a single argument slot, giving the value of the string inside the
guotes. This 1instance is further decomposed into elements: two

instances of QUOTE and an instance of CHARACTER-STRING.

All the instances which the FLOW Tutor creates and works
with are part of a multi-level structure. The highest level
instances correspond to such things as the instruction booklet,
programming problems, and the function of programs. The lowest
level instances correspond to the individual FLOW statements and

keypresses.

This hierarchical structure of instances plays a major role
in the operation of the FLOW Tutor. Extension of the hierarchy
to higher and lower levels forms the basis for predicting and
interpreting student behavior. The hierarchical structure gives
the Tutor multiple descriptions of the same information at dif-
ferent conceptual levels. Student actions can then be dealt with

at levels appropriate for both the Tutor and the student.

As a schema-based system, the FLOW Tutor has an 1inherently
distributed 1intelligence. That is, there is no central process
which is "aware" of everything at a high level and controls its
subprocesses. Instead, each schema knows only about the things
which immediately concern it. When a schema and 1its instances
become active they ¢try to find their parts and fit themselves

into higher level schemas. The only central coordination is fur-

nished by an agenda, a simple list of instances waiting to be
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active. Distributed intelligence systems such as this are based
on the premise that a 1large number of relatively simple,
independent processes, each concerned only with 1itself and its
immediate environment, will have the net effect of a powerful

intelligence.

How Schemas Operate

When an instance becomes active in the FLOW Tutor system,
the specialist for 1its schema is invoked. The specialist can
then act based on an examination of the instance and any relevant
parts of the Tutor's model of the world. There are several types
of actions the specialist can perform. The specialist may modify
an instance, predict new instances of schemas, change the Tutor's
model of the world, 1look for input from the student, put
instances on the agenda, or send messadges to the student. 1In a
typical case, an instance on the agenda might have been predicted
by some other instance. When the instance becomes active, its
specialist would check to see if all of 1its elements had been

observed. If not, the specialist would predict the next element

and put it on the agenda. If all the elements of the instance
had been observed, the specialist would change the status of the
instance to OBSERVED and place its host on the agenda. I1f the
instance had no host, the specialist might search for a host and
try to incorporate the instance into a suitable higher level

instance.
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when a student responds in a manner not predicted by the
conceptually guided analysis, the Tutor starts processing in a
data-driven manner. When this happens, the Tutor stops the
conceptually-guided expansion of instances and waits to see what
the student does. New instances are made up by lower level
instances or Kkeypresses, which are 1initially without a host.
These instances try to find a suitable host, or create one, and
the resulting structure builds up until it joins some of the
existing higher level structure. There are two situations 1in
which data-driven processing 1is particularly interesting: with

alternate correct solutions, and with student errors.

Alternate correct solutions. Although the programming prob-

lems 1in the FLOW instruction booklet are rather elementary, most
of them have many different acceptable solutions. When the stu-
dent enters a program different from that predicted by the Tutor,
data-driven processing is used to 1incorporate the keypresses,
statements, and simple functions into a representaticn for the
overall function of the program. Information 1in a schema
representation is enmeshed in a hierarchy, and two programs which
may be completely different at the keypress or statement level
can be equivalent when compared at higher levels which represent

simple or complex functions.

Two instances are considered formally equivalent if they are
instances of the same schema and have the same argument values;

they may have different elements and still be equivalent. Thus

i b
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two function instances might be formally equivalent even though
they were composed of completely different FLOW statements. A
simple example of this can be seen by comparing the instances of
DISPLAY-QUOTED-STRING and DISPLAY in Figures 3 and 4. The
DISPLAY-QUOTED-STRING instance is distinguished in part by its
statement number, but the corresponding argument slot for the
DISPLAY instance gives its functional sequence in the program.
Thus the DISPLAY-QUOTED-STRING instance for the statement
@26 DISPLAY "JEAN"

would be distinguished from *DISPLAY-QUOTED-STRING-1932 because
of their different statement numbers, but at the level of a func-
tional description the two DISPLAY instances would have the same
arguments (both are after *DISPLAY-1853) and would be formally

equivalent.

Handling a Student Error

e - ——— - - - - ——— - ——

Figure 5 shows examples of error schemas operating within an
actual student protocol. The student has written a program and
is now about to modify it to eliminate an error. The protocol
in Figure 5 begins as the student is finishing a reading pause.
The student must list the program before it can be modified, and
the Tutor has therefore predicted that the student will press the
L key (for the List command). Instead of pressing the L key,

nowever, the student presses the RUBOUT key. RUBOUT is an




00946 TIME

96954 RUBOUT

20965 TIME

00976 TIME

06987 TIME

TUTOR: TO MODIFY YOUR PROGRAM YOU MUST FIRST
LIST YOUR PROGRAM

80992 RUBOUT

20999 R

01010 TIME

21011 RUBOUT

01022 X

01624 D

#1035 TIME

01046 TIME

TUTOR: TO LIST YOUR PROGRAM YOU MUST PRESS
THE L KEY

01058 L

01068 TIME

21079 TIME

01083 RUBOUT

01088 RUBOUT

01094 1

01096 5

01102 SPACE

01113 TIME

01116 D

Figure 5

Protocol of an automated tutorial session.
(Lines preceded by a number correspond to
student keypresses. The TIME message indi-
cates that the student has not pressed any
keys since the last message.)
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illegal key in this context, and was not predicted by the Tutor.
The Tutor now uses data-driven processing to interpret the unex-
pected RUBOUT key. An instance of RUBOUT 1is «created, and it
tries to find a suitable host for itself. Each schema contains
information about possible hosts (in the "phost" slot), and
RUBOUT makes a breadth-first search up through the hierarchy
looking for an instance which has been predicted. RUBOUT eventu-
ally finds that it could be part of a predicted MODIFY-PROGRAM
instance, but MODIFY-PROGRAM had predicted LIST as its next ele-
ment. Therefore RUBOUT instantiates the INCORRECT-ORDER schema
on the assumption that the student was trying to modify the pro-
gram, but forgot to 1list it before using RUBOUT to change the
statement number. As is typical of error schemas, the schema for
an INCORRECT-ORDER error includes an expected pause. In general,
the pause lengths predicted depend on the the type of error and
the student's knowledge of the the relevant concepts, with
shorter pauses allowed for concepts which are newer to the stu-
dent. In this case, since the Tutor's model of the student indi-
cates that this student has already used the List command, a
moderately 1long pause of 30 seconds 1is predicted. When the
30-second pause is observed, the INCORRECT-ORDER instance 1is
satisfied, and the Tutor sends a message advising the student to
list the program. Having just told the student to LIST, the
Tutor now quite naturally expects the student to press the L key
to list the program. The student, however, tries several other

keys (most of them illegal) and finally, after another, shorter
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pause, the Tutor gives more explicit advice to the student.

Current Status of the FLOW Tutor

The automated FLOW Tutor system currently operates only in
"retrospective mode." Protocols are recorded as students learn
FLOW, with a human tutor in another room simulating the
automated Tutor. (Figure 5 is an example of such a protocol.)
Selected portions of these protocols then serve as input for the
automated Tutor. . The system does not yet have a sufficient data-
base to follow a student through the entire FLOW course. In
addition, it is too slow to respond in real time. Thus, the sys-
tem has not yet been used with real students, although this is
our eventual goal. To paraphrase Bobrow et al. (1977), the FLOW
Tutor does realistic tutoring, but it does not yet do real tutor-

ing.

Summary

Our goal is to develop a theory of 1learning and teaching.
In particular, we are interested in the process of individualized
instruction and in the type of interactions which take place
between a student and a teacher. 1In this paper we describe a
preliminary step towards the development of such a theory. Here,
we use the observations of numerous tutorial sessions between
human tutors and students to characterize the tutorial process.

Then, we show how these ideas can be combined with a schema-based

representational system to form an automated Tutor.
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Three sources of knowledge must be used in succesful tutor-
ing. First, there must be knowledge about the subject matter.
Second, there must be knowledge of the student, including some
estimation of the current state of knowledge that the student has
about the topic being studied. Third, there must be knowledge of
the principles of learning, so that appropriate tutorial inter-

vention can take place.

A successful model of a tutor must therefore contain all
these types of knowledge. 1In addition, the process structure of
the tutorial system must allow it to be both conceptually guided
and data-driven, depending upon the performance of the student.
This paper serves both as an outline of some of the properties of
tutorial 1interaction and also as a case study of the development

of a working automated tutorial system.

The automated system cannot now instruct real students. At
the moment, the knowledge and processing structures required for
succesful tutorial instruction in the wide variety of situations
which can occur are more complex than can be handled. But we
believe the deficiencies are ones of guantity, and not of basic
principle. As computers become cheaper and more powerful, it
becomes feasible to think of small, independent, automated teach-
ing systems which could have a real understanding of their sub-
ject matter and interact intelligently with students having dif-

ferent backgrounds and abilities. Before such systems can be
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built on more that a limited, ad-hcc basis, we must learn a great
deal more apbout learning, teaching, and the representation and
organization of knowledge. The FLOw Tutor project 1is directed

towaras these goals.
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Footnotes

The research was supported by the Advanced Research Projects

Agency and the Office of Naval Research of the Department of De-

fense ana was monitored by ONK undaer Contract No.
Nbb£14-76~-C-006238. Mark Wallen made significant contributions to
the research -- programming and maintaining the FLOW system and

assoclated tutorial and analysis systems, and acting as tutor on
numerous occasions.

1. FLOW was originally developed by Jef Raskin of the Visu-
al Arts Department of the University of California, San Diego,
specifically for students with no mathematics or science back-
ground; see Raskin (1974).

2. The programs required of the student are all conceptual-
ly very simple -- the most complex problem given to the student

is: "Write a program which will display the word yes' if the
input text contains an E and 'no' otherwise." Thus, the usual
difficulties of writing a program from a problem statement (au-

tomatic programming) do not arise.
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